3.133 \(\int \frac{(a+a \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=118 \[ \frac{4 a^2 (3 A+2 B) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{2 a^2 (3 A-B) \sin (c+d x) \sqrt{\cos (c+d x)}}{3 d}+\frac{2 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{d \sqrt{\cos (c+d x)}}+\frac{4 a^2 B E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d} \]

[Out]

(4*a^2*B*EllipticE[(c + d*x)/2, 2])/d + (4*a^2*(3*A + 2*B)*EllipticF[(c + d*x)/2, 2])/(3*d) - (2*a^2*(3*A - B)
*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d) + (2*A*(a^2 + a^2*Cos[c + d*x])*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.26874, antiderivative size = 118, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {2975, 2968, 3023, 2748, 2641, 2639} \[ \frac{4 a^2 (3 A+2 B) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{2 a^2 (3 A-B) \sin (c+d x) \sqrt{\cos (c+d x)}}{3 d}+\frac{2 A \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{d \sqrt{\cos (c+d x)}}+\frac{4 a^2 B E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[((a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(3/2),x]

[Out]

(4*a^2*B*EllipticE[(c + d*x)/2, 2])/d + (4*a^2*(3*A + 2*B)*EllipticF[(c + d*x)/2, 2])/(3*d) - (2*a^2*(3*A - B)
*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d) + (2*A*(a^2 + a^2*Cos[c + d*x])*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])

Rule 2975

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*S
in[e + f*x])^(n + 1))/(d*f*(n + 1)*(b*c + a*d)), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])
^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n +
 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d
, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n]
 || EqQ[c, 0])

Rule 2968

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+a \cos (c+d x))^2 (A+B \cos (c+d x))}{\cos ^{\frac{3}{2}}(c+d x)} \, dx &=\frac{2 A \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{d \sqrt{\cos (c+d x)}}+2 \int \frac{(a+a \cos (c+d x)) \left (\frac{1}{2} a (3 A+B)-\frac{1}{2} a (3 A-B) \cos (c+d x)\right )}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 A \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{d \sqrt{\cos (c+d x)}}+2 \int \frac{\frac{1}{2} a^2 (3 A+B)+\left (-\frac{1}{2} a^2 (3 A-B)+\frac{1}{2} a^2 (3 A+B)\right ) \cos (c+d x)-\frac{1}{2} a^2 (3 A-B) \cos ^2(c+d x)}{\sqrt{\cos (c+d x)}} \, dx\\ &=-\frac{2 a^2 (3 A-B) \sqrt{\cos (c+d x)} \sin (c+d x)}{3 d}+\frac{2 A \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{d \sqrt{\cos (c+d x)}}+\frac{4}{3} \int \frac{\frac{1}{2} a^2 (3 A+2 B)+\frac{3}{2} a^2 B \cos (c+d x)}{\sqrt{\cos (c+d x)}} \, dx\\ &=-\frac{2 a^2 (3 A-B) \sqrt{\cos (c+d x)} \sin (c+d x)}{3 d}+\frac{2 A \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{d \sqrt{\cos (c+d x)}}+\left (2 a^2 B\right ) \int \sqrt{\cos (c+d x)} \, dx+\frac{1}{3} \left (2 a^2 (3 A+2 B)\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{4 a^2 B E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{4 a^2 (3 A+2 B) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{2 a^2 (3 A-B) \sqrt{\cos (c+d x)} \sin (c+d x)}{3 d}+\frac{2 A \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{d \sqrt{\cos (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 6.33418, size = 623, normalized size = 5.28 \[ -\frac{A \csc (c) \sec ^4\left (\frac{c}{2}+\frac{d x}{2}\right ) (a \cos (c+d x)+a)^2 \sqrt{1-\sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt{\sin (c) \left (-\sqrt{\cot ^2(c)+1}\right ) \sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt{\sin \left (d x-\tan ^{-1}(\cot (c))\right )+1} \sec \left (d x-\tan ^{-1}(\cot (c))\right ) \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )\right )}{d \sqrt{\cot ^2(c)+1}}-\frac{B \csc (c) \sec ^4\left (\frac{c}{2}+\frac{d x}{2}\right ) (a \cos (c+d x)+a)^2 \left (\frac{\tan (c) \sin \left (\tan ^{-1}(\tan (c))+d x\right ) \, _2F_1\left (-\frac{1}{2},-\frac{1}{4};\frac{3}{4};\cos ^2\left (d x+\tan ^{-1}(\tan (c))\right )\right )}{\sqrt{\tan ^2(c)+1} \sqrt{1-\cos \left (\tan ^{-1}(\tan (c))+d x\right )} \sqrt{\cos \left (\tan ^{-1}(\tan (c))+d x\right )+1} \sqrt{\cos (c) \sqrt{\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}}-\frac{\frac{\tan (c) \sin \left (\tan ^{-1}(\tan (c))+d x\right )}{\sqrt{\tan ^2(c)+1}}+\frac{2 \cos ^2(c) \sqrt{\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}{\sin ^2(c)+\cos ^2(c)}}{\sqrt{\cos (c) \sqrt{\tan ^2(c)+1} \cos \left (\tan ^{-1}(\tan (c))+d x\right )}}\right )}{2 d}-\frac{2 B \csc (c) \sec ^4\left (\frac{c}{2}+\frac{d x}{2}\right ) (a \cos (c+d x)+a)^2 \sqrt{1-\sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt{\sin (c) \left (-\sqrt{\cot ^2(c)+1}\right ) \sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt{\sin \left (d x-\tan ^{-1}(\cot (c))\right )+1} \sec \left (d x-\tan ^{-1}(\cot (c))\right ) \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )\right )}{3 d \sqrt{\cot ^2(c)+1}}+\sqrt{\cos (c+d x)} \sec ^4\left (\frac{c}{2}+\frac{d x}{2}\right ) (a \cos (c+d x)+a)^2 \left (-\frac{\csc (c) \sec (c) (A \cos (2 c)-A+2 B \cos (2 c)+2 B)}{4 d}+\frac{A \sec (c) \sin (d x) \sec (c+d x)}{2 d}+\frac{B \sin (c) \cos (d x)}{6 d}+\frac{B \cos (c) \sin (d x)}{6 d}\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(3/2),x]

[Out]

Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2*Sec[c/2 + (d*x)/2]^4*(-((-A + 2*B + A*Cos[2*c] + 2*B*Cos[2*c])*Csc[c
]*Sec[c])/(4*d) + (B*Cos[d*x]*Sin[c])/(6*d) + (B*Cos[c]*Sin[d*x])/(6*d) + (A*Sec[c]*Sec[c + d*x]*Sin[d*x])/(2*
d)) - (A*(a + a*Cos[c + d*x])^2*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c
/2 + (d*x)/2]^4*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]
*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*Sqrt[1 + Cot[c]^2]) - (2*B*(a + a*Cos[c +
 d*x])^2*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*Sec[d*x
 - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c
]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*Sqrt[1 + Cot[c]^2]) - (B*(a + a*Cos[c + d*x])^2*Csc[c]*Sec[c/2
 + (d*x)/2]^4*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*
Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[
Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2
*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Ta
n[c]]]*Sqrt[1 + Tan[c]^2]]))/(2*d)

________________________________________________________________________________________

Maple [B]  time = 3.598, size = 388, normalized size = 3.3 \begin{align*} -{\frac{4\,{a}^{2}}{3\,d} \left ( 2\,B\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}-\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 3\,A+B \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}\cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +3\,A\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+2\,B\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}-3\,B\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \right ){\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)^2*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x)

[Out]

-4/3*a^2*(2*B*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4-(-2
*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(3*A+B)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+3*A*(sin(1/2
*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(-2*sin(1/2*d*x+1/
2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+2*B*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*
(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)-3*B*(2*sin(1/2*d*x+1/2*c)^2-
1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d
*x+1/2*c)^2)^(1/2))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2
*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \cos \left (d x + c\right ) + A\right )}{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^2/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{B a^{2} \cos \left (d x + c\right )^{3} +{\left (A + 2 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} +{\left (2 \, A + B\right )} a^{2} \cos \left (d x + c\right ) + A a^{2}}{\cos \left (d x + c\right )^{\frac{3}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((B*a^2*cos(d*x + c)^3 + (A + 2*B)*a^2*cos(d*x + c)^2 + (2*A + B)*a^2*cos(d*x + c) + A*a^2)/cos(d*x +
c)^(3/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**2*(A+B*cos(d*x+c))/cos(d*x+c)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \cos \left (d x + c\right ) + A\right )}{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^2/cos(d*x + c)^(3/2), x)